
LLNL-TR-635754

Lorenz APIs and REST Services

J. W. Long

April 25, 2013

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Lorenz APIs and LORA/REST Services
• Project Overview
• API Overview
• Lorenz::Simple – Easy-to-use Perl Module for Tool Developers on LC Clusters
• Lorenz::* – Perl Modules for Use on Clusters
• Lorenz::API - Lorenz Perl Module for Remote Use

o Brief Summary of Lorenz::API methods
o Extended Summary of Lorenz:API and Lorenz.js libraries

• LORA – Lorenz RESTful API
• Notes on JSONP

Project Overview

Lorenz is a project aimed at using modern web technologies to make High Performance
Computing (HPC) easier. It has been under development at Lawrence Livermore
National Laboratory since the spring of 2010.

Lorenz is tackling three broad areas: a system "dashboard" aimed at making
information about the computing center easy to determine "at a glance", job
management (submission and monitoring of batch jobs), and application portals which
are loosely coupled pre- and post-processors to existing codes.

API Overview

Lorenz has numerous APIs and libraries focused on different use cases.

API Language Used By Purpose

Lorenz::Host
Lorenz::User
Lorenz::Group
Lorenz::*

Perl Lorenz
Developer

Individual Perl modules for accessing
specific Lorenz functionality. These
modules return Perl native data structures
rather than the JSON envelop returned by
the REST equivalents. This should be used
by developers who are implementing
Lorenz internals.

Lorenz::REST::* Perl Lorenz
Developer

The specific Perl modules invoked by the
REST handler, these primary interact with
the lower level Lorenz::Host|User|...
modules, but provide additional structure
such as a return envelope showing output,
error, and status. Data returned is in JSON
format.

Lorenz::Simple Perl Tool
Developers

Aggregated Perl module for tool developers
which makes it simple to access a variety of

(cluster tools) Lorenz functionality with minimal effort. This
should be the default API to use for tools
which will run on the clusters.

Lorenz::API Perl
Tool
Developers
(remote tools)

An LWP-based Perl module which provides
a high level API to the LORA web services.
This is for developers creating applications
to be run on remote hosts, although it can
be used on the clusters. Requires
authentication since the library acts as a
browser equivalent.

Lorenz.js JavaScript

Web App
Developers
(LC-hosted
apps)

A high-level library which provides access
to the LORA REST services to web
applications. The calling sequence and
function names match the Lorenz::API Perl
module.

Lorenz-
JSONP.js JavaScript

Web App
Developers
(remote-
hosted apps)

A high-level library which provides access
to the LORA REST services to web
applications. The calling sequence and
function names match the Lorenz::API Perl
module. This version uses JSONP to deal
with cross-site scripting issues. (In
progress.)

Lorenz::Simple – Easy-to-use Perl Module for Tool Developers on LC Clusters

The Simple.pm perl module makes it easy for tool developers on the clusters to access
the range of Lorenz functionality without having to know how the methods are
organized. Data are returned in perl 'native' formats rather than the JSON format
returned by the REST versions of these methods.

Lorenz::Simple module for use on clusters
BEGIN {
 require '/usr/global/tools/lorenz/lib/lorenz.pl';
}
use strict;
use Lorenz::Simple;

my $lorenz = Lorenz::Simple->new();

my @hosts = $lorenz->getAllHosts();
my @groups = $lorenz->getUserGroups();

The Lorenz::Simple module provides access to all of the methods available through the
individual top-level perl modules, shown in the following section.

Lorenz::* – Perl Modules for Use on Clusters

These category-specific perl modules are located in the server/lib/perl/Lorenz
directory and are for the development of tools within the Lorenz suite as well as
applications which simply make use of some Lorenz service. These modules return
"native" data rather than the "wrapped" data returned by the RESTful API by default. For
instance, the Lorenz::User::getUserGroups() method returns an array of group names.
These modules use OO features of the language.

Conventional modules for use on clusters
BEGIN {
 require '/usr/global/tools/lorenz/lib/lorenz.pl';
}
use strict;
use Lorenz::Host;
use Lorenz::User;

my @hosts = Lorenz::Host->getAllHosts();
my @groups = Lorenz::User->getUserGroups();

Module Methods

Lorenz::Bank
getAllBanks getBankCpuUsage getBankInfo getBankMembers
getUserAccountBankInfo getUserBankDetails getUserBankObjs
getUserBanks

Lorenz::Cluster

getAllClusterDetails getAllClusters getClusterBackfill
getClusterBatchDetails getClusterBatchStat us getClusterDetails
getClusterInfo getClusterJobLimits getLoginNodeStatus getMachStatus
getUserClusters getUserProcessesByCluster

Lorenz::Host
clustername getAllHosts getAvailableLoginNodes getDeadHosts
getHostSpecs getHostStatus getLoginNodes isStorageHost
pickLoginNode

Lorenz::System getDirectoryList killProcesses runApprovedCommand runCommand
runCommand2 runCommandWithOpts runLorenzCommand safeRun

Lorenz::User

clearUserLorenzTmpDir debugLog getAllGroups getAllUserInfo
getGroupInfo getGroupMembers getOun getOunFromUsername
getUserContacteesByOun getUserDefaultHost getUserEmail
getUserEnclaveStatus getUserFileTransferHostsInfo getUserGroups
getUserHomeDir getUserHomeDirOnHost getUserHosts getUserInfo
getUserJumpdirs getUserLorenzDir getUserLorenzTmpDir
getUserSshHosts getUsername getUsernameFromOun listAllUsers
lookUpCoord

Lorenz::Util

callersId expandAbbrevs fileModifiedWithin getCanonicalPath
getChildren getLastModTime getWeather isApprovedHost
isApprovedPath isValidFileName lorenz_from_json moveFiles
sendEmail sendEmail_WithMail sendEmail_WithSMTP
sendEmail_WithSendmail timeoutExec toText wraperr wrapit wrapjson
wrapout

Lorenz::API - Lorenz Perl Module for Remote Use

For remote applications, or for use on the clusters when Kerberos credentials are not
available, an LWP-based module called Lorenz::API is available. Because the LC web
server requires an OTP authentication, you must provide authentication information.

Lorenz::API – Perl module for use on remote hosts
use strict;
use Lorenz::API;

For command line tools, you can have the library prompt you for username and
password
my $api = Lorenz::API->new({ prompt=>1 });

...or you can provide them directly
my $api = Lorenz::API->new({ username=$username, password=$password });

my $response = $api->getAllHosts();

response is a standard HTTP::Response object
if ($response->is_success) {
 print $response->content;
} else {
 print $response->status_line, "\n";
}

Brief Summary of Lorenz::API methods

Lorenz::API
methods

cancelJob editJobParams execCommand executeRoute getAccounts
getAllBanks getAllClusterUtilizations getAllMachineLoads getAllUserInfo
getAllUserProcesses getBankHistory getBankHistoryForHost
getBankInfo getBankMembership getBanks getClusterBatchDetails
getClusters getCompletedJobs getCpuUsage getDefaultHost
getDiskQuotaInfo getEnclaveStatus getFile getFileSystemStatus
getGivetake getGroupInfo getGroups getHostDetails getHostInfo
getHostJobLimits getHostTopology getJobDetails getJobs
getJobsForHost getLoginNodeStatus getMachineStatus getMyJobs
getNetworkInfo getNews getNewsItem getPathStat getPurgedFiles
getSSHhosts getScratchFilesystems getTransferHosts getUltraCurve
getUltraCurveListing getUserBanksByHost getUserInfo getUserOun
getUserProcessesByCluster giveFiles holdJob killProcess new readFile
sendJobSignal storeAppend storeDelete storeDelete storeRead
storeWrite submitJob tailFile takeFiles unholdJob

The Lorenz::API module provides an interface that is nearly identical to the Lorenz.js
JavaScript library. There also is a lower-level method, executeRoute(), which lets you
specify the route explicitly. E.g.,

my $response = $api->executeRoute("/user/smith/groups", "get", {});

Extended Summary of Lorenz:API and Lorenz.js libraries

These two libraries are for remote applications. The Lorenz.js library can be loaded in a
remote web application with:

<script type="text/javascript"
src="https://lc.llnl.gov/lorenz/js/objects/Lorenz.js"></script>

All perl methods take an optional final argument, $args, a hashref containing additional
arguments to the low-level endpoints.

All JavaScript methods take an option uOptions argument containing AJAX options.

Method1 REST Endpoint Description

cancelJob($host,$jobid) /queue/:host/:jobid [delete] Cancels the
given job.

editJobParams($host,$jobid) /queue/:host/:jobid [put]

Modifies the
parameters for
an idle (non-
running) job.

execCommand($host,$command) /command/:host [post]

Executes the
given
command and
returns stdout,
stderr, and exit
status from it.

getAccounts($user) /user/:user/hosts [get]

Returns list of
hosts on which
the user has
an account.

getAllBanks() /banks [get]

Returns list of
all
SLURM/MOAB
banks.

getAllClusterUtilizations() /status/clusters/utilization/hourly2
[get]

Returns hour-
by-hour cluster
utilization for
the past 14
days for each
cluster.

getAllMachineLoads() /status/clusters [get]
Returns slurm
status for each
cluster,

including idle,
allocated, and
total nodes per
partition.

getAllUserInfo() /users [get]

Returns a list
of all users
along with
additional
information
about each.

getAllUserProcesses() /user/ME/cluster/processes [get]

Get list of the
calling user's
processes on
all hosts.

getBankHistory($bank) /bank/:bank/cpuutil/daily [get]

Returns daily
bank utilization
for given bank
across the
center.

getBankHistoryForHost($bank,$host) /cluster/:host/bank/:bank/cpuutil/daily
[get]

Returns daily
bank utilization
for given bank
on one host.

getBankInfo($user,$bank) /user/:user/bank/:bank [get]

Returns
information
about given
bank for given
user.

getBankMembership($host,$bank) /bank/:bank/membership/:host [get]

Returns
members of a
given bank on
the given host.

getBanks($user) /user/:user/banks [get]

Returns list of
SLURM/MOAB
banks to which
user belongs.

getClusterBatchDetails($host) /user/ME/cluster/:host/batchdetails
[get]

Returns job-
submission
details for
each partition
on given host.

getClusters($user) /user/:user/clusters [get] Returns list of
hosts on which

given user can
submit a job.

getCompletedJobs($user,$period) /user/:user/queue [get]

Returns details
about jobs
completed by
given user
over the last
$period days.

getCpuUsage($user) /user/:user/cpuutil/daily [get]

Returns day-
by-day cpu
usage for each
cluster.

getDefaultHost($user) /user/:user/default/host [get]

Returns the
default host for
Lorenz
activities
requiring an
LC host.

getDiskQuotaInfo($user) /user/:user/quotas [get]

Returns user's
disk quota
information for
home directory
and other
filesystems.

getEnclaveStatus($user) /user/:user/enclavestatus [get]

Returns details
about the
given user's
HPC enclave
status.

getFile($host,$path) /file/:host/:path [get] Retrieves the
given file.

getFileSystemStatus() /status/filesystem [get]

Returns
capacity, type,
and percent
used for all
filesystems.

getGivetake() /user/ME/givetake [get]

Returns
give/take
status for the
active user.

getGroupInfo($group) /:group [get]
Returns
information
such as GID,

group
membership,
approver for
given group.

getGroups($user) /user/:user/groups [get]

Returns list of
LC groups to
which user
belongs.

getHostDetails($host) /cluster/:host/details [get]

Returns key
value pairs
about given
host, including
configuration
information,
hardware
specs,
filesystem
mounts, etc.

getHostInfo($host) /host/:host [get]

Returns
information
about
submitting jobs
on given host.

getHostJobLimits($host) /cluster/:host/joblimits [get]

Returns
information
about
submitting jobs
on given host.

getHostTopology($host) /cluster/:host/topo [get]

Returns an
image showing
hardware
topology for
given host.

getJobDetails($host,$jobid) /queue/:host/:jobid [get]
Returns live
details about
the given job.

getJobs($user) /user/:user/queue [get]

Returns the
given user's
current job
queue across
the center.

getJobsForHost($user,$host) /user/:user/queue [get]
Returns the
given user's
current job

queue on the
given cluster.

getLoginNodeStatus() /status/loginNode [get]

Get up/down
and other stats
for each login
node on each
cluster.

getMachineStatus() /status/machines [get]

Returns the
up/down
status and
number of
users on each
cluster.

getMyJobs() /user/ME/queue [get]

Returns the
calling user's
current job
queue across
the center.

getNetworkInfo() /support/network [get]
Returns the
network
indicator.

getNews() /news [get] Returns list of
all news items.

getNewsItem($item) /news/:item [get]
Returns an
individual
news item.

getPathStat($host,$path) /file/:host/:path [get]

Returns stat()
information
about the
given path.

getPurgedFiles($user) /user/:user/purgedFiles [get]

Returns the list
of files the
given user has
had purged
from Lustre.

getSSHhosts($user) /user/:user/sshhosts [get]

Returns a list
of hosts to
which the
given user can
ssh.

getScratchFilesystems() /scratchfs [get]
Returns a list
of the scratch
file systems.

getTransferHosts($user) /user/:user/transferhosts [get]

Returns a list
of hosts to
which the user
can transfer
files.

getUltraCurve($host,$path,$curveid,$start) /data/:host [post]

Retrieve a
specific ultra
curve from the
given file.

getUltraCurveListing($host,$path) /data/:host [post]

Returns a list
of curves in
the given ultra
file.

getUserBanksByHost($user) /user/:user/bankhosts [get]

Returns list of
SLURM/MOAB
banks for user,
arranged by
host.

getUserInfo($user) /user/:user [get]
Returns details
about the
given user.

getUserOun($user) /user/:user/oun [get]

Returns the
given user's
OUN and LC
username.

getUserProcessesByCluster($host) /user/ME/cluster/:host/processes
[get]

Get list of the
calling user's
processes on
the given host.

giveFiles($files,$to,$force) /user/ME/give [post]

Give $files to
the user $to,
who can then
use take to
retrieve.

holdJob($host,$jobid) /queue/:host/jobid [put]
Holds an idle
(non-running)
job.

killProcess($hosts,$pids) /cluster/processes [post] Kill the given
processes.

readFile($host,$path) /file/:host/:path [get]

Reads the
given file
(same as
getFile).

sendJobSignal($host,$jobid,$signal) /queue/:host/:jobid [put]
Sends the
given job the
given signal.

storeAppend($store) /store/:store [post]

Appends to an
existing
information
store for the
calling user.

storeDelete($store) /store/:store [delete]

Deletes the
given
information
store for the
calling user.

storeRead($store) /store/:store [get]

Reads the
given
information
store for the
calling user.

storeWrite($store) /store/:store [put]

Write data to
the calling
user's
information
store.

submitJob($host) /queue/:host [post]
Submits a job
to the given
host.

tailFile($host,$path,$tail) /data/:host [get]

Returns the
last $tail lines
of the given
file.

takeFiles($target,$from,$force) /user/ME/take [post]

Take files that
were
previously
given by the
user $from,
and put them
into $target.

unholdJob($host,$jobid) /queue/:host/jobid [put]
Removes the
hold for a held
job.

1 - Same method name for Lorenz::API perl modules as for Lorenz.js JavaScript library.

LORA – Lorenz RESTful API

The Lorenz RESTful API, or LORA, was modeled after the NERSC Web Toolkit, or
NEWT, developed at Lawrence Berkeley National Lab. NEWT is a web service that
allows you to access computing resources at NERSC through a simple RESTful API.
After discussions with our colleagues at NERSC we decided to adopt their API
specification and re-implement the API within our own LC computing center.

By default the LORA REST endpoints return a JSON-wrapped envelope, with output,
error, and status fields. This can be controlled by adding the following
parameters: _envelope=0 (disables the envelope), _format=raw|json (controls whether
raw output is first converted to json), _printAndExit=1 (prints the output and then exits
immediately.)

These endpoints can be accessed directly from any language that supports direct web
interactions (Python, Perl, C, Java, ...), but using the Lorenz-supplied language bindings
is recommended. Currently we provide support for Perl (Lorenz::API.pm) and JavaScript
(Lorenz.js and LorenzJSONP.js).

Here is a complete list of REST endpoints. Unless otherwise noted (e.g., via a [PUT]
notation), all request methods for these endpoints use GET.

REST Endpoint Purpose
/bank/
/banks/ List all banks

/bank/<bank> Show details about specific bank

/bank/<bank>/cpuutil Show cpu utilization of each cluster for given bank
on a daily basis

/chaos/ Show OS update information (downtime durations,
comments)

/cluster/
/clusters/ List clusters on which jobs may be run

/cluster/<cluster>/bank/<bank>/cpuutil/daily Show daily cpu utilization for given bank on given
cluster

/cluster/<cluster>/batchdetails Show details of the batch system on given cluster
/cluster/<cluster>/details Show hardware and usage details of given cluster
/cluster/<cluster>/joblimits Show job limits of given cluster

/cluster/<cluster>/topo Return hardware topographical image of given
cluster

/clusters/backfill Show batch backfill information for each cluster

/clusters/details Show hardware and usage details of all clusters

/command/<host>[POST] Execute an arbitrary command on the given host.
The command is run as the invoking user.

/email[POST] Send an email as the invoking user.
/file/<host>/<path> Retrieve the file located on host at given path
/group/<group> Get information about the given group
/groups List all groups
/host/
/hosts/ List all hosts in the center

/host/<host> Show details about given host

/jsonp [GET]

Allows access to non-GET resources for JSONP
applications. Use the 'route' and 'via' query
arguments to describe the resource.

E.g.,
/jsonp?via=delete&route=/file/aztec/var/tmp/junkfile

/lcalerts/ Retrieve current LC alerts
/lcalerts/<alertid> Retrieve specific LC alert
/lcalerts/<alertid>[DELETE] Delete given LC alert
/lcalerts/<alertid>[PUT] Update an existing LC alert
/lcalerts/[PUT] Create a new LC alert

/lcstaff/away Access LC staff away calendar (must be in lcstaff
group)

/lora/endpoints List available endpoints
/news/ Return list of all news items
/news/<newsid> Return specific news article
/news/ALL Return all news articles
/noop No-op
/parallelfs List parallel filesystems

/portlet/getAllPortletConf Get portlet configuration information for current
user

/portlet/getCustomPortlets Get custom portlets for current user
/queue/<host> Show job queue on given host

/queue/<host>/<jobid>/STAT[GET] Retrieve STAT-generated stack traces from given
job

/queue/<host>/<jobid>/STAT[PUT] Generate STAT stack trace for given job
/queue/<host>/<jobid>/steps List job steps for given job
/queue/<host>/<jobid>[DELETE] Cancel given job

/queue/<host>/<jobid>[GET] Get details of given job
/queue/<host>/<jobid>[PUT] Update properties of given queued or held job
/queue/<host>/reservation/<res> Show details of given reservation on given host
/queue/<host>/reservations List reservations on given host
/queue/<host>[POST] Submit a batch job on given host
/scratchfs List available scratch filesystems
/script/<host>/<script>[POST] Execute a registered script on given host
/sqlog/<host>[POST] Query historical slurm data using sqlog
/status/cluster
/status/clusters Show status of all clusters

/status/cluster/<cluster> Show status of given cluster
/status/cluster/<cluster>/utilization/daily Show cluster utilization on a daily level
/status/cluster/<cluster>/utilization/hourly Show cluster utilization on an hourly level
/status/clusters/ME/utilization/daily Show my daily cluster utilization
/status/clusters/ME/utilization/hourly Show my hourly cluster utilization

/status/clusters/user/<user> Show status of clusters to which given user has
access

/status/clusters/utilization/daily Show cluster utilization on a daily level

/status/clusters/utilization/daily2 Show cluster utilization on a daily level (alternate
output format)

/status/clusters/utilization/hourly Show cluster utilization on an hourly level

/status/clusters/utilization/hourly2 Show cluster utilization on an hourly level
(alternate output format)

/status/filesystem Show status of all filesystems
/status/host/<host> Show status of given host
/status/license Show status of all licenses
/status/license/<license> Show status of given license
/status/loginNode Show status of all login nodes
/status/machines Show status of all hosts
/store List available data stores for current user
/store/<store>[DELETE] Delete user's given data store
/store/<store>[GET] Retrieve user's given data store
/store/<store>[POST] Update an existing data store for current user
/store/<store>[PUT] Create new data store for current user
/support/defaultLinks Return the default set of links

/support/getCredentialLifetime Return the amount of time the current Kerberos
credentials have before expiration

/support/lorenzAlert Get the active Lorenz alert
/support/lorenzAlert[DELETE] Remove the Lorenz alert
/support/lorenzAlert[PUT] Create a Lorenz alert
/support/mylcToggle Get the current mylc activation status
/support/mylcToggle[DELETE] Activate a deactivated mylc site
/support/mylcToggle[PUT] Deactivate an active mylc site
/support/network Show the current network zone
/support/reportError[POST] Report a Lorenz error to developers
/user/
/users/ List all users

/user/<user> Show details of given user

/user/<user>/bank/<bank> Show details of how given user can use given
bank

/user/<user>/banks Show user's banks
/user/<user>/cluster/<cluster>/batchdetails Show batch details for given user on given cluster
/user/<user>/clusters List clusters on which given user can submit a job
/user/<user>/cpuutil/daily Show user's daily cpu utilization
/user/<user>/default/host Show user's default host
/user/<user>/enclavestatus Show user's Enclave status
/user/<user>/groups Show groups to which given user belongs

/user/<user>/hosts Show hosts on which given user has login
accounts

/user/<user>/oun Show given user's official username and LC
username

/user/<user>/purgedFiles Show files given user has had purged from Lustre
in past 90 days

/user/<user>/queue Show all of given user's running and queued jobs
/user/<user>/quotas Show user's disk usage for various filesystems

/user/<user>/sshhosts Show hosts to which given user can ssh to within
the LC domain

/user/<user>/transferhosts Show details related to file transfer hosts for given
user

/user/ME/cache/<cache>[DELETE] Delete a user's cached item
/user/ME/cache/<cache>[GET] Retrieve a user's cached item
/user/ME/cache[DELETE] Delete all of a user's cached items
/user/ME/cache[GET] Get all of a user's cached items

/user/ME/give Show current status as reported by 'give'
command

/user/ME/give[POST] Give a file to another LC user

/user/ME/givetake Show current status as reported by 'give' and 'take'
commands

/user/ME/take Show current status as reported by 'take'
command

/user/ME/take[POST] Take a file which another LC user has given
/weather Show current weather information

Notes on JSONP

Web applications hosted on remote servers can still take advantage of the Lorenz
JavaScript API, but must deal with cross-site scripting (XSS) restrictions in the browser.
To accommodate this use case, Lorenz provides support for JSONP, or "JSON with
padding", a communication technique used in JavaScript. It provides a method to
request data from a server in a different domain, something prohibited by typical web
browsers because of the same origin policy. A limitation of this approach is that only the
GET request method can be used when accessing the REST endpoints.

To address these issues, remote web app developers can use Lorenz-JSONP.js library,
which has the same API as Lorenz.js, or can directly invoke the /jsonp endpoint.

If only accessing LORA endpoints that use the GET request method, the following
instantiation can be used:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">

<html>
<head>
 <title>JSONP Test</title>
 <script src="https://lcwebdev.llnl.gov/lorenz/js/jquery/jquery-
1.8.2.min.js"></script>
 <script>
 $(document).ready(function(){
 var d = $.ajax({
 dataType: 'jsonp',
 url: 'https://lc.llnl.gov/lorenz/lora/lora.cgi/user/ME/groups'
 });

 d.done(function(){
 $('#output').html(JSON.stringify(arguments));
 });
 });
 </script>
</head>

<body>
 <div id="output"></div>
</body>
</html>

However, it is recommended to use the Lorenz-JSONP.js library instead, which maps
PUT, POST, and DELETE methods behind the scenes to GET-equivalent functionality
on the server.

